Monthly Archives: November 2017

Indium Arsenide Nanoparticles

Indium Arsenide Nanoparticles

InAs is a semiconductor material made of arsenic and indium. The semiconductor has a melting point of 942 °C and appears in the form of grey crystals with a cubic structure. It is very similar to gallium arsenide and is a material having a direct bandgap. Indium arsenide is popular for its narrow energy bandgap and high electron mobility.

InAs, or indium monoarsenide, is a semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C.

InAs is used for construction of infrared detectors, for the wavelength range of 1–3.8 µm. The detectors are usually photovoltaic photodiodes. Cryogenically cooled detectors have lower noise, but InAs detectors can be used in higher-power applications at room temperature as well. Indium arsenide is also used for making of diode lasers.

Follow us:

Indium Arsenide Nanoparticles

Indium Arsenide Nanoparticles

Indium arsenide is similar to gallium arsenide and is a direct bandgap material. Indium arsenide is sometimes used together with indium phosphide. Alloyed with gallium arsenide it forms indium gallium arsenide – a material with band gap dependent on In/Ga ratio, a method principally similar to alloying indium nitride with gallium nitride to yield indium gallium nitride.

InAs is well known for its high electron mobility and narrow energy bandgap. It is widely used as a terahertz radiation source as it is a strong photo-Dember emitter.

Quantum dots can be formed in a monolayer of indium arsenide on indium phosphide or gallium arsenide. The mismatches of lattice constants of the materials create tensions in the surface layer, which in turn leads to formation of the quantum dots. Quantum dots can also be formed in indium gallium arsenide, as InAs dots sitting in the gallium arsenide matrix.

Indium Arsenide Quantum Dots:

With the emergence of applications based on short-wavelength infrared light, indium arsenide quantum dots are promising candidates to address existing shortcomings of other infrared-emissive nanomaterials. However, III–V quantum dots have historically struggled to match the high-quality optical properties of II–VI quantum dots.

Technological improvements in the fabrication of short-wavelength infrared (SWIR, 1,000–2,000 nm) detector technology have recently inspired a new wave of optical fluorescence imaging, as longer imaging wavelengths promise increased spatiotemporal resolution, penetration depths and unprecedented sensitivity.

Indium arsenide (InAs) quantum dots (QDs) are among the most promising SWIR probes to address these challenges as they exhibit size-tunable emission, broad absorption spectra, and show higher QYs than rare earth nanocrystals (NCs) silver chalcogenide NC, or organic SWIR dyes. While much recent SWIR imaging has focused on carbon nanotubes (CNTs) the low QYs (<0.1%) and broad emission profiles of as-synthesized CNT ensembles have rendered imaging in narrow spectral windows and multiplexed imaging applications challenging. In contrast to other SWIR QDs, such as PbS or Ag2S, InAs QDs can exhibit higher QYs and probe stability after transfer from the organic phase to aqueous media. This is mostly attributed to the zincblende crystal structure of InAs QDs that allows the straightforward overcoating with a higher band gap shell consisting of established II–VI QD materials, which isolates the InAs core from the environment.

Applications of Indium Arsenide

A member of the III–V family of semiconductors, indium arsenide offers several advantages as an alternative to silicon including superior electron mobility and velocity, which makes it an oustanding candidate for future high-speed, low-power electronic devices.

Indium arsenide is used for construction of infrared detectors, for the wavelength range of 1–3.8 µm. The detectors are usually photovoltaic photodiodes. Cryogenically cooled detectors have lower noise, but InAs detectors can be used in higher-power applications at room temperature as well. Indium arsenide is also used for making of diode lasers.

Indium arsenide is similar to gallium arsenide.

InAs is sometimes used together with indium phosphide. Alloyed with gallium arsenide it forms indium gallium arsenide – a material with band gap dependent on In/Ga ratio, a method principally similar to alloying indium nitride with gallium nitride to yield indium gallium nitride.

InAs is well known for its high electron mobility and narrow energy bandgap. It is widely used as terahertz radiation source as it is a strong Photo-dember emitter.

Quantum dots can be formed in a monolayer of indium arsenide on indium phosphide or gallium arsenide. The mismatches of lattice constants of the materials create tensions in the surface layer, which in turn leads to formation of the quantum dots. Quantum dots can also be formed in indium gallium arsenide, as indium arsenide dots sitting in the gallium arsenide matri

 


Contact Us:

Please feel free to send us your requirement about our products
sales@nanoshel.com
contact@nanoshel.com
+1 646 470 4911 (US)
+36 30 4750555 (EU)
+91-9779880077 (India)