Product | Shape Memory Polymer Pellet PMM | |
Stock No | NS6130-09-914 | |
CAS | 25038-59-9 | Confirm |
Physical Form Pellets | (Injection Moulding Capability) | |
Glass Transition temp | 65°C | Confirm |
Metlting Temp | 200°C | Confirm |
Specific Gravity | 1.25 | Confirm |
Temperature Stability | 300°C | Confirm |
Tensile Strength | ~13Mpa (Rubber Region) | Confirm |
Elongation | >600% | Confirm |
Bending Modulus | 1900 (Glassy Region) | Confirm |
Bending Strength | 50MPa (Glassy Region) | Confirm |
Potting Type | (PMP) | |
Colour Tone | Light Yellow | Confirm |
A/B Weight Ratio | 40/60 | Confirm |
Viscosity Sol A | 360 | Confirm |
Viscosity Sol B | 300 | Confirm |
Specific Gravity Sol A | 1.062 | Confirm |
Specific Gravity Sol B | 1.215 | Confirm |
Strength | G/R | |
Bending Strength | 75 Mpa | Confirm |
Bending Modulus | 1800 Mpa | Confirm |
Tensile Strength | 52 Mpa | Confirm |
Elongation | 10-30 | Confirm |
Hardness | 80 (Shore D) | Confirm |
Strength | R/R | |
Tensile Modulus | 20Mpa | Confirm |
Tensile Strength | >400Mpa | Confirm |
Elongation | 4.5Mpa | Confirm |
Hardness | 40% | Confirm |
Glass Transition Point | 55°C | Confirm |
Pot Life (Standard) | 180Sec | Confirm |
Cure Temp (?×time) | 70°C for 1-2Hours | Confirm |
Injection Extrusion | 20Kg Bag | |
Quality Control | Each Lot of Anti Counterfeiting Solutions Technology and Unique SMP Labels was tested successfully | |
Main Inspect Verifier | Manager QC |
Typical Chemical Analysis
Polymer nanocomposites consist of polymer or copolymer having nanoparticles or nanofillers dispersed in polymer matrix. These may be of different shapes (fibers, platelets, spheroids) but atleast one dimension must be in range 1-50nm. Polymers are light weight and corrosion resistant materials.
Furthermore, polymers are versatile materials for nanotechnology due to their processability, flexibility, diverse functionalities, low cost and tunable properties. They have high thermal, electrical and mechanical properties characteristics.
Polymer Nanomaterials has revealed the property advantages that nanomaterial additives can provide in comparison to both their conventional filler counterparts and base polymer. Properties which have been shown to undergo substantial improvements include: (1) Mechanicals e.g. strength, modulus and dimensional stability (2) Improved solvent and heat resistance (3) Decreased permeability to gases, water and hydrocarbons (4) Thermal stability and heat distortion temperature (5) Flame retardancy (6) Chemical resistance (7) Surface appearance (8) Electrical conductivity (9) Optical clarity in comparison to conventionally filled polymers.
The utility of polymer-based nanomaterials in these areas is quite diverse involving many potential applications and have been proposed for their use in various applications. They are used in memory devices, bio-imaging, drug delivery, chemical sensors, electroluminescent devices, electro catalysis, batteries, smart windows, electromagnetic interference shielding, transparent conductive coating, electrostatic dissipation, photovoltaic, gas sensors, optical displays, superconductor devices etc
Conjugation of polymers with various nanoscale filler inclusions have been used for sensor applications including gas sensors, biosensors and chemical sensors. The nanofillers employed include metal oxide nanowires, carbon nanotubes, nanoscale gold, silver, nickel, copper, platinum and palladium particles. Polymer-based solar cells have the capability of being used to make cheap large flexible panels.
Nanoshel’s Product Categories Link:
Anti Counterfeiting Solutions Technology and Unique SMP Labels