Cobalt II Oxide Powder (CoO, Purity: 99.99%, APS: 40-60µm)

Cobalt II Oxide Powder

Product: Cobalt II Oxide Powder (CoO, Purity: 99.99%, APS: 40-60µm)

Quality Control: Each lot of NANOSHEL Cobalt II Oxide was tested successfully.

Cobalt II Oxide Powder

Particles Size Analysis – CoO Powder

CoO Powder

SEM – Cobalt Oxide Powder

Product Name Cobalt II Oxide Powder
Stock No. NS6130-12-000904
CAS 1308-04-9 Confirm
Purity 99.99%, Confirm
APS 40-60µm Confirm
Molecular Formula CoO Confirm
Molecular weight 74.93g/mol Confirm
Form Powder Confirm
Appearance Black/Gray Confirm
Density 6.44 g/cm³ Confirm
Melting Point 1933 °C Confirm
Solubility insoluble in water
Main Inspect Verifier Manager QC

Typical Chemical Analysis

Co <10ppm
Ni < 5ppm
Fe < 5ppm
Cu < 5pm
Pb <5ppm
Mn  <10ppm
As <10ppm
All Other Metal  <10ppm

 Experts Review:

Dr. Marcus Tägtmeyer (International Medical and Technological University, Dar es Salaam, Tanzania)


Dr. Marcus Tägtmeyer (International Medical and Technological University, Dar es Salaam, Tanzania)
Cobalt Oxide Powder: Magnetic nanoparticles clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticles clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including  nanomaterials-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, micro fluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor  and cation sensors.


Dr. Ms Jane Li (National Penghu University of Science and Technology, Magong, Penghu, Republic of China)
Dr. Ms Jane Li (National Penghu University of Science and Technology, Magong, Penghu,  Republic of China)
Cobalt Oxide Powder: Magnetic materials are those materials that show a response to an applied magnetic field. They are classified into five main types; ferromagnetic, paramagnetic, diamagnetic, anti-ferromagnetic and ferrimagnetic. Magnetic Nanoparticles are highly stable, shape-controlled and narrow sized. These nanoparticles can be synthesized by several popular methods, including co-precipitation, micro emulsion, thermal decomposition, solvothermal, sonochemical, microwave assisted, chemical vapor deposition, combustion synthesis, carbon arc, laser pyrolysis etc.


Dr. Willem-Jan de Kleijn Ph.D (Luleå University of Technology, Luleå, Sweden)
Dr. Willem-Jan de Kleijn Ph.D (Luleå University of Technology, Luleå, Sweden)
Cobalt Oxide Powder: The two main features that dominate the magnetic properties of nanoparticles and give them various special properties are: (a) Finite-size effects (single-domain or multi-domain structures and quantum confinement of the electrons); (b) Surface effects, which results from the symmetry breaking of the crystal structure at the surface of the particle, oxidation, dangling bonds, existence of surfactants, surface strain, or even different chemical and physical structures of internal -core and surface- shell parts of the nanoparticles.


Dr. JKF Gojukai PhD (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)
Dr. JKF Gojukai PhD (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)
Cobalt Oxide Powder: MNPs are of great interest for a wide range of disciplines, such as magnetic fluids, catalysis, biomedicine, magnetic energy storage, information storage and spintronics. They are used to enhance the capacity of magnetic storage devices such as magnetic tapes, and computer hard discs. Magnetic nanoparticles can also be used as giant magneto-resistance (GMR) sensors. In the medical field MNPs are used as Contrast Agents (CA) to enhance the contrast in MRI ; in tumor therapy where they can be selectively introduced into the tumor cells and then their temperature is increased using an oscillating magnetic field to reach near 43 °C (this temperature is known to make the tumor cells more sensitive to radiation and other treatment modalities) ; and finally used as site-specific drug delivery agents which involves immobilizing the drug on magnetic materials under the action of external magnetic field.


Dr. Huang Fu Ph.D (Maebashi Institute of Technology, Maebashi, Gunma, Japan)
Dr. Huang Fu Ph.D (Maebashi Institute of Technology, Maebashi, Gunma, Japan)
Cobalt Oxide Powder:
Drug targeting has emerged as one of the modern technologies for drug delivery. The possibilities for the application of iron oxide magnetic nanoparticles in drug targeting have drastically increased in recent years. MNPs in combination with an external magnetic field and magnetizable implants allow the delivery of particles to the desired target area, fix them at the local site while the medication is released, and act locally (magnetic drug targeting) Transportation of drugs to a specific site can eliminate side effects and also reduce the dosage required. The surfaces of these particles are generally modified with organic polymers and inorganic metals or oxides to make them biocompatible and suitable for further functionalization by the attachment of various bioactive molecules. The process of drug localization using magnetic delivery systems is based on the competition between the forces exerted on the particles by the blood compartment and the magnetic forces generated from the magnet.


Cobalt II Oxide Powder


Contact Us:

Please feel free to send us your requirement about our products
sales@nanoshel.com
contact@nanoshel.com
+1 646 470 4911 (US)
+36 30 4750555 (EU)
+91-9779880077 (India)


Nanoshel’s Most Moving Products:

NS6130-01-101 – Silver (Ag) Nanoparticles / Nanopowder (Ag, 99.99%, 80-100 nm, metal basis)

NS6130-01-105 – Aluminium Nanoparticles/Nanopowder (Al, 99.9%, APS: 100nm, Metal basis)

NS6130-01-128 – Copper Nanoparticles/Nanopowder (Cu, Purity: 99.9%, APS: 80-100nm, Metal Basis)

NS6130-01-108 – Gold (Au) Nanopowder (Au, 99.99+%, 50-100 nm)

NS6130-02-219 – Antimony Tin Oxide Nanoparticles (ATO, SnO2:Sb2O3=90:10, 99.8%, 30nm)

NS6130-03-301 – Aluminium Oxide Nanopowder (Al2O3, 99.99%, <100nm)

NS6130-03-341 – Silicon Oxide Nanopowder (SiO2, S-type, Purity: 99.9%, APS: 15-20nm)

NS6130-03-350 – Titanium Oxide Nanopowder (TiO2, Anatase, 99.9%, 10-25nm)

NS6130-10-1002 – P Type Silicon Wafer (4″ Boron Doping)

NS6130-03-341 – SiO2 Nanoparticles (Silicon Dioxide, 15-20nm, 99.9%, S-type)

NS6130-10-1007 – Metallic Copper Foamposite (Cu, PPI-50PPI, Thickness; 2mm)

NS6130-10-1052 – Titanium Sputtering Target (Ti, Purity: 99.99%)

NS6130-10-1214 – Aluminium Metal Foam (Al, Closed Cell, 2-11mm)

NS6130-10-1233 – Screen Printed Electrodes (3-electrodes)

NS6130-06-640 – Pristine MWCNT (99%, OD:10-20nm, Length:3-8μm)

NS6130-06-601 – Single Walled Carbon Nanotubes (>98wt% OD:1-2nm, Length:3-8µm, High Purity)

NS6130-06-680 – Industrial Grade Carbon Nanotubes in bulk quantities

NS6130-06-659 – COOH Functionalized CNT (Carbon Nanotubes, OD: 10-20nm, Length: 3-8µm)

NS6130-03-364 – Single Layer Graphene (C, >50%, Thickness 0.5-6nm, Lateral Size 1-10µm)

NS6130-03-365 – Multilayer Graphene (C, 4-6 Layer Flakes, >80%, 1-10µm)

NS6130-06-659 – COOH Functionalized CNT (Carbon Nanotubes, OD: 10-20nm, Length: 3-8µm)

NS6130-09-907 – Montmorillonite (Natural montmorillonite Modified, >99%, <80nm)