Home » InP ZnS Nanoparticles QDs (Indium Phospide/Zinc Sulphide Quantum Dots-580nm)


Stock No. CAS MSDS Specification COA
NS6130-12-000108 22398-80-7/1314-98-3 MSDS pdf Specification pdf COA pdf

InP ZnS Nanoparticles QDs

Product: InP ZnS Nanoparticles QDs (Indium Phospide/Zinc Sulphide Quantum Dots-580nm)


Indium Phospide/Zinc Sulphide Quantum Dots-580nm

Indium Phospide/Zinc Sulphide Quantum Dots-580nm

Product Indium Phospide /Zinc Sulphide
Stock No. NS6130-12-000108
CAS 22398-80-7/1314-98-3 Confirm
Purity 99.9% Confirm
Composition Inp/ZnS Confirm
Emission Peak 580nm Confirm
Quantum Yield 50-80% Confirm
Average Particle Size (FWHM) <50nm Confirm
Solvent Toulene Confirm
Application Cell Imaging Application
Quality Control Each lot of Indium Phospide /Zinc Sulphide was tested successfully.
Main Inspect Verifier Manager QC

Typical Chemical Analysis

Assay 99.9%

Expert Reviews

Dr. Ms. Kamiko Chang, Ph.D (University of Science and Technology Beijing, China)

Indium Phospide /Zinc Sulphide Colloidal semiconductor quantum dots (QDs) have attracted attention in various fields due to their unique size- and shape-dependent optical and electronic properties. In particular, their light-emitting characteristics in a wide range of wavelengths, i.e., from ultraviolet to near-infrared, makes them a new class of emitters for various technological applications such as biomedical imaging, light-emitting diodes, and lasers.

Dr. Nicholaos G. Demas, (Newcastle University School Of Machanical & Systems Engg. UK)

Indium Phospide /Zinc Sulphide As of today, various semiconductors (including the II−VI and III−V families) have been suggested for such uses, and InP QDs can be recognized as important candidates for Cd-free environmentally benign emitters, operating across the entire visible range.

Dr. Bruce Perrault, Ph.D (Georgia Institute of Technology (Georgia Tech), USA)

Indium Phospide /Zinc Sulphide InP QDs in nanoscale strongly absorb light when the excitation energy is greater than the bandgap energy. Electrons are promoted from the valance to the conduction band. The energy of the quantum confinement peak depends on the size, shape and structure core@shell. The PL emission efficiency of InP/ZNS NCs increases significantly with increasing the synthesis temperature.

Dr. Huojin Chan, (University of Science and Technology of China, Hefei, Anhui, China)

Indium Phospide /Zinc Sulphide The InP particle size increases with the increase in temperature. This remarkable enhancement in optical properties is due to the successful surface passivation of the InP cores with ZnS shells of wider band gap energy. The ZnS shells structurally passivate the dangling bonds on the surface of the cores and also energetically suppress the leakage of excitons from the cores into the shell because of its wider band gap energy as compared to that of the core.

Dr. Darren Chandler, Ph.D(Manchester Metropolitan University, U.K)

Indium Phospide /Zinc Sulphide When the surface of InP is passivated by Zns, core shell quantum dots is formed and the quantum yield and Photo Lumniscence efficiency is greatly improved compared to that with bare InP. Beside the optical transitions in the InP core, the optical processes within the ZnS shell strongly influence the dynamics of carriers’ population and evolution after photo-generation.

*Exchanges of materials/products are not permitted. Nanoshel does not offer refunds.
*US Dollar Cheques Not Accepted, Only Bank TT/Credit Cards Accepted