Home » Lithium Manganese Oxide Powder (LiMn2O4, Purity: 99%, APS: 40-50µm)

COMPOUNDS POWDER

Stock No. CAS MSDS Specification COA
NS6130-05-540 12057-17-9 Specification pdf COA pdf

Lithium Manganese Oxide Powder (LiMn2O4, Purity: 99%, APS: 40-50µm)

Lithium Manganese Oxide Powder

Product: Lithium Manganese Oxide Powder (LiMn2O4, Purity: 99%, APS: 40-50µm)

Quality Control: Each lot of Lithium Manganese Oxide Powder was tested successfully.

Particles Size Analysis – Li4Mn2O4 Powder

Particles Size Analysis – Li4Mn2O4 Powder

 
Product Lithium Manganese Oxide Powder
Stock No NS6130-05-540
CAS 12057-17-9 Confirm
APS 40-50 Confirm
Purity 99% Confirm
Molecular Formula LiMn2O4 Confirm
Form Powder Confirm
Main Inspect Verifier Manager QC

Typical Chemical Analysis

Assay 99%

Expert Reviews

Dr. Marcus Tägtmeyer, (International Medical and Technological University, Dar es Salaam, Tanzania)

Compound micro powder is made up of atoms of different elements, joined together by chemical bonds. A compound micropowder synthesis usually involves the breaking of existing bonds and the formation of new ones. Synthesis of a complex molecule may involve a considerable number of individual reactions leading in sequence from available starting materials to the desired end product. Each step usually involves reaction at only one chemical bond in the molecule.


Dr. Ms Jane Li,  (National Penghu University of Science and Technology, Magong, Penghu,  Republic of China)

Compound micropowders possesses great properties such as high strength, biocompatibility, corrosion resistance, and hydrogen storage capability. Among various compound micro powders, Ti-Cr based micro powders have one of the most promising properties and are mostly popular owing to their capacity of hydrogen storage, high temperature oxidation, and scaling resistance.


Dr. Willem-Jan de Kleijn Ph.D, (Luleå University of Technology, Luleå, Sweden)

Iron aluminides based compound micro powders are candidates for a variety of structural applications. The combination of low density, excellent oxidation and sulfidation resistance, and lack of strategic alloying elements makes these alloys particularly attractive. A variety of fabrication methods have been employed in the study of intermetallic compounds; powder metallurgy processing is becoming increasingly important for obtaining desirable microstructures, improved properties, and near net shape manufacturing capabilities.


Dr. JKF Gojukai PhD, (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)

A compound micro powder processing method approach, known as reaction sintering, combustion synthesis, or self-propagating high-temperature synthesis, utilizes an exothermic reaction between powder constituents to synthesize compounds. Process advantages include the use of inexpensive and easily compacted elemental powders, low processing temperatures, short processing times, and considerable flexibility in terms of compositional and microstructural control..


Dr. Huang Fu Ph.D, (Maebashi Institute of Technology, Maebashi, Gunma, Japan)

In compound micropowders one of the possible and promising methods of improving the physical and mechanical properties (Young’s modulus, ultimate tensile strength, yield strength, hardness, durability, and specific electrical and thermal properties) of compound micro powder is the introduction of micro- and nanoparticles of oxides (nitrides, borides, and carbides) into the melt with subsequent solidification. Methods of production of nonmetallic micro- and nanoparticles can significantly affect morphology and physical properties of nanopowders. Thus, the particle structure, phase composition, and morphology are to be studied carefully in order to assure the properties of compound micro powder produced using these particles.


Lithium Manganese Oxide

Lithium Manganese Oxide


Note
*Exchanges of materials/products are not permitted. Nanoshel does not offer refunds.
*US Dollar Cheques Not Accepted, Only Bank TT/Credit Cards Accepted