Manganese Oxide Nanopowder (Mn3O4, Purity: 99.9%, APS: 10-20nm)

Manganese Oxide Nanopowder

Product: Manganese Oxide Nanoparticles (Mn3O4, Purity: 99.9%, APS: 10-20nm)

Quality Control: Each lot of NANOSHEL Manganese Oxide was tested successfully.

Manganese Oxide Nanopowder

SEM – Manganese Oxide Nanoparticles

Mn3O4 Nanoparticles

Manganese oxide Nanopowder – Size Analysis

Material Manganese Oxide Nanopowder
Stock No NS6130-03-384
CAS 1317-34-6 Confirm
APS 10-20nm Confirm
Purity 99.9% Confirm
Molecular Formula Mn3O4 Confirm
Molecular Weight 228.812 g/mol Confirm
Color Brown Confirm
Morphology Spherical Confirm
Density 4.86 g/cm³ Confirm
Melting Point 1560 °C Confirm
Boiling Point 2847 °C Confirm
Solubility Insoluble in water Confirm
Available Quantities 25Gms, 50Gms, 100Gms and larger quantities
Main Inspect Verifier Manager QC

Typical Chemical Analysis

Mn ≥70 %
Fe ≤ 0.008 %
Cu ≤ 0.0047 %
Pb ≤ 0.0022 %
Cd ≤ 0.0002 %
As ≤ 0.0013 %
Ni ≤ 0.006 %
Ca ≤ 0.0029 %
Mg ≤ 0.0051 %
Na ≤ 0.0057 %
K ≤ 0.003 %

Experts Review:

Miller-(Christopher)-345x239Dr. Baron Augustin, Ph.D (TUM)(Technical University of Munich, Germany)
Metal oxides play a very important role in many areas of chemistry, physics and materials science.  The metal elements are able to form a large diversity of oxide compounds. These can adopt a vast number of structural geometries with an electronic structure that can exhibit metallic, semiconductor or insulator character. In technological applications, oxides are used in the fabrication of microelectronic circuits, sensors, piezoelectric devices, fuel cells, coatings for the passivation of surfaces against corrosion, and as catalysts.


images (33)

Dr. Darren Chandler, Ph.D(Manchester Metropolitan University, U.K)
Oxide nanoparticles can exhibit unique physical and chemical properties due to their limited size and a high density of corner or edge surface sites. Particle size is expected to influence three important groups of basic properties in any material. The first one comprises the structural characteristics, namely the lattice symmetry and cell parameters.


Wiggs

Dr. Ms. Cristiana Barzetti (University of Cagliari-Department of Chemical Engineering and Material Science, Italy)
Bulk oxides are usually robust and stable systems with well-defined crystallographic structures. However, the growing importance of surface free energy and stress with decreasing particle size must be considered: changes in thermodynamic stability associate with size can induce modification of cell parameters and/or structural transformations and in extreme cases the nanoparticle can disappear due to interactions with its surrounding environment and a high surface free energy.  In order to display mechanical or structural stability, a nanoparticle must have a low surface free energy.


jetsonlee

Dr. Jang Huang, Ph.D (Shandong Science and Technology University, China)
The effect of size is also related to the electronic properties of the oxide. In any material, the nanostruture produces the quantum size or confinement effects which essentially arise from the presence of discrete, atom-like electronic states. From a solid-state point of view, these states can be considered as being a superposition of bulk-like states with a concomitant increase in oscillator strength.  Additional general electronic effects of quantum confinement experimentally probed on oxides are related to the energy shift of exciton levels and optical bandgap.


images (21)Dr. Mark Brown (Georgia Institute of Technology in Atlanta,USA)
Structural and electronic properties drive the physical and chemical properties of the solid, the third group of properties influenced by size in a simple classification. In their bulk state, many oxides have wide band gaps and a low reactivity. A decrease in the average size of an oxide particle do in fact change the magnitude of the band gap, with strong influence in the conductivity and chemical reactivity.


Manganese Oxide Nanoparticles

Manganese Oxide Nanoparticles



Nanoshel’s Product Categories Link:

ORGANIC COMPOUNDS, METAL ORGANIC FRAMEWORKS, FEED GRADE ACTIVE PHARMACEUTICAL INGREDIENT, ORGANIC FLUORINE MATERIALS, NEW PRODUCTS, METAL MICRO POWDER, OXIDE MICRO POWDER, COMPOUND MICRO POWDER, ALLOY MICRO POWDER, CLAY POWDER, CARBON POWDER, 3D PRINTING POWDER, ULTRA HIGH TEMPERATURE CERAMICS NANOMATERIALS, ACETATES BORATES NANOMATERIALS, CARBIDES ALUMINATES NANOMATERIALS, CHLORIDES NANOMATERIALS, FLUORIDES NANOMATERIALS, NITRATES/SULPHIDES, SILICATES/TITANATES, STIMULATES/ALUMINATES NANOMATERIALS