Molybdenum Disilicide Nanoparticles (MoSi2, Purity: 99.9%, APS: 80-100nm)

Molybdenum Disilicide Nanoparticles

Product: Molybdenum Disilicide Nanoparticles (MoSi2, Purity: 99.9%, APS: 80-100nm)

Quality Control: Each lot of NANOSHEL Molybdenum Disilicide Nanoparticles was tested successfully.

Molybdenum Disilicide Nanoparticles

SEM – MoSi2 Powder

Molybdenum Dilisicide Nanoparticles

Particles Size Analysis – MoSi2 Nanopowder

Product Name Molybdenum Disilicide Nanoparticles
Stock No. NS6130-12-000933
CAS 12136-78-6 Confirm
Purity 99.9% Confirm
APS 80-100nm Confirm
Molecular Formula MoSi2 Confirm
Molecular Weight 152.11g/mol Confirm
Form Powder Confirm
Colour Black/Gray Confirm
Melting Point 1870-2030 °C Confirm
Density 6.3 g/cm3 Confirm
Coefficient of thermal expansion 5.1 × 10-6 K-1 Confirm
Resistance rate 21 × 10-6 Ω.cm Confirm
Solubility Insoluble in acid
Main Inspect Verifier Manager QC

Typical Chemical Analysis

Si 50ppm
O 50ppm
C 100ppm
Al 100ppm
Fe 100ppm
Mn 50ppm
Na 50ppm
Mg 100ppm
All Other Metal  <150ppm

Experts Review:

58496396Dr. Bruce Perrault, Ph.D (Georgia Institute of Technology (Georgia Tech), USA)
Nanoparticles are not solely a product of modern technology, but are also created by natural processes such as volcano eruptions or forest fires. Naturally occurring nanoparticles also include ultrafine sand grains of mineral origin (e.g. oxides, carbonates). A decisive feature that makes nanoparticles technically interesting is their surface-to-volume ratio. This ratio increases with decreasing particle diameter.


1252525Dr. Myron Rubenstein, Ph.D (Polytechnic University of Turin, Italy)
Nanoparticles of a metal compound, e.g., a metal oxide, a doped metal compound, and a metal complex, are widely used in the fields of chemical catalysts, optoelectronic materials, optical materials, sensor materials, flame retardant materials, electrode materials and others. Such nanoparticles are provided in various shapes which include, e.g., spherical particles, nanofibers, and nanosheets having enhanced surface activity.


2536582Dr. Huojin Chan (University of Science and Technology of China, Hefei, Anhui, China)
Metal compounds are extensively used as flame retardants; their key advantage consists in that no toxic combustion products are released during combustion and exploitation of the composite.  Most of metal-containing flame retardants are effective smoke suppressants.


10604509_1459864657612760_2405225879143508610_oDr. Ms. Yi Yen Shi, (King Mongkut’s University of Technology Thonburi,Bangkok, Thailand)
Metal compound nanoparticles act by forming dense protective surface layers and by increasing the yield of carbonaceous residue. Therefore, the following flammability characteristics of polymer materials are essential for assessment of their flame-retardant performance: burning rate to be determined in accordance with, coke number, temperature and rate of mass loss, and other.


125448Dr. Hans Roelofs Ph.D (National Technical University of Athens, Greece)
Metal compounds are often used as synergistic additives to other types of flame retardants.  Metal compounds of transition metals are of particular interest because of their structural, spectral and chemical properties are often strongly dependant on the nature of the ligand structure.


MoSi2 Nanoparticles

Molybdenum Disilicide Nanoparticles


Contact Us:

Please feel free to send us your requirement about our products
sales@nanoshel.com
contact@nanoshel.com
+1 646 470 4911 (US)
+36 30 4750555 (EU)
+91-9779880077 (India)


Nanoshel’s Most Moving Products:

NS6130-01-101 – Silver (Ag) Nanoparticles / Nanopowder (Ag, 99.99%, 80-100 nm, metal basis)

NS6130-01-105 – Aluminium Nanoparticles/Nanopowder (Al, 99.9%, APS: 100nm, Metal basis)

NS6130-01-128 – Copper Nanoparticles/Nanopowder (Cu, Purity: 99.9%, APS: 80-100nm, Metal Basis)

NS6130-01-108 – Gold (Au) Nanopowder (Au, 99.99+%, 50-100 nm)

NS6130-02-219 – Antimony Tin Oxide Nanoparticles (ATO, SnO2:Sb2O3=90:10, 99.8%, 30nm)

NS6130-03-301 – Aluminium Oxide Nanopowder (Al2O3, 99.99%, <100nm)

NS6130-03-341 – Silicon Oxide Nanopowder (SiO2, S-type, Purity: 99.9%, APS: 15-20nm)

NS6130-03-350 – Titanium Oxide Nanopowder (TiO2, Anatase, 99.9%, 10-25nm)

NS6130-10-1002 – P Type Silicon Wafer (4″ Boron Doping)

NS6130-03-341 – SiO2 Nanoparticles (Silicon Dioxide, 15-20nm, 99.9%, S-type)

NS6130-10-1007 – Metallic Copper Foamposite (Cu, PPI-50PPI, Thickness; 2mm)

NS6130-10-1052 – Titanium Sputtering Target (Ti, Purity: 99.99%)

NS6130-10-1214 – Aluminium Metal Foam (Al, Closed Cell, 2-11mm)

NS6130-10-1233 – Screen Printed Electrodes (3-electrodes)

NS6130-06-640 – Pristine MWCNT (99%, OD:10-20nm, Length:3-8μm)

NS6130-06-601 – Single Walled Carbon Nanotubes (>98wt% OD:1-2nm, Length:3-8µm, High Purity)

NS6130-06-680 – Industrial Grade Carbon Nanotubes in bulk quantities

NS6130-06-659 – COOH Functionalized CNT (Carbon Nanotubes, OD: 10-20nm, Length: 3-8µm)

NS6130-03-364 – Single Layer Graphene (C, >50%, Thickness 0.5-6nm, Lateral Size 1-10µm)

NS6130-03-365 – Multilayer Graphene (C, 4-6 Layer Flakes, >80%, 1-10µm)

NS6130-06-659 – COOH Functionalized CNT (Carbon Nanotubes, OD: 10-20nm, Length: 3-8µm)

NS6130-09-907 – Montmorillonite (Natural montmorillonite Modified, >99%, <80nm)