Nitrogen Doped Graphene Powder (Purity: 99.9%, APS: 1-5 µm)

Nitrogen Doped Graphene Powder

Product: Graphene Powder Nitrogen Doped (Purity: 99.9%, APS: 1-5 µm)

Quality Control: Each lot of NANOSHEL Nitrogen Doped Graphene Powder was tested successfully.

Nitrogen Doped Graphene Powder

Graphene Powder Nitrogen Doped

dfhndfhf

SEM – Graphene Powder Nitrogen Doped

Product Name Graphene Powder Nitrogen Doped
Stock No. NS6130-12-000618
CAS 7782-42-5 Confirm
Purity 99.9 % Confirm
APS 1-5 µm Confirm
Appearance Dark Gray-Black Powder Confirm
Doping Nitrogen Doped Confirm
Conductivity >1000 S/m (0.3g/cm³) Confirm
Layers 1-5 atomic layer graphene nanosheets Confirm
Lateral size 0.5-5 µm Confirm
Nitrogen 1.0-3.0% Confirm
Oxygen 7.0-7.5% Confirm
Specific Surface Area 500 m2/g Confirm
Available Quantities 25Gms, 50Gms, 100Gms and larger quantities
Main Inspect Verifier Manager QC (Nitrogen Doped Graphene Powder)

Experts Review:

58496396Dr. Bruce Perrault, Ph.D (Georgia Institute of Technology (Georgia Tech), USA)
Doping on nanomaterials provides a flexible way to tune to the properties of the materials while maintaining their high surface areas. The electronic, optical, photochemical, photo-electrochemical, photocatalytic and photoexcited relaxation properties can be tuned towards the desired direction by adding different elements. The materials can be engineered towards specific applications through careful selection of the dopants.


1252525Dr. Myron Rubenstein, Ph.D (Polytechnic University of Turin, Italy)
Doping is a powerful and effective way to alter the electronic and optical properties of a semiconductor. Doping is essential in the semiconductor industry since most semiconductors including silicon are essentially insulators without doping at room temperature. The addition of dopant can introduce electronic and structural defects into the pristine nanomaterials that can be advantageous or deleterious.


2536582Dr. Huojin Chan (University of Science and Technology of China, Hefei, Anhui, China)
Doping typically follows a Poisson distribution. The uniform doping is done either by growth or nucleation techniques by decoupling the doping and growth process. In nucleation doping reaction conditions are controlled in such a way along with judicious choice of reactants that a nucleus of dopant can be created and by shell growth of effectively confining the dopant to the center of particle.


10604509_1459864657612760_2405225879143508610_oDr. Ms. Yi Yen Shi, (King Mongkut’s University of Technology Thonburi,Bangkok, Thailand)
Nano-materials have been recently investigated due to their novel properties that are acquired at the nanometer scale, properties which change with size or shape. Besides the elemental composition and physical structure, as in bulk material or traditional chemistry, the size of the material provides another variable for us to tune the property of material. Moreover, a few dopants in the material can make the properties more adjustable.


125448Dr. Hans Roelofs Ph.D (National Technical University of Athens, Greece)
Dopant precursor substantially changes the reaction kinetics. Doped semiconductor nanomaterials are expected to play an important role in nanoelectronics and nanophotonic devices. Doping level of nanostructures will effects the properties and functionality of nanoparticles. Doped semiconductor nanomaterials constitute a unique and important class of nanomaterials with novel properties.


N doped Graphene Powder

Nitrogen Doped Graphene Powder


Contact Us:

Please feel free to send us your requirement about our products
sales@nanoshel.com
contact@nanoshel.com
+1 646 470 4911 (US)
+36 30 4750555 (EU)
+91-9779880077 (India)


More Products By Nanoshel

NS6130-01-164 – Ag Nanowires (Purity: >99.9%, Diameter: 40-50nm)

NS6130-01-165 – Copper Nanowire ( Diameter: 40-50nm, Purity>99.9%)

NS6130-04-438 – Gold Nanowires (Au, Purity: 99.9%, Diameter: 10nm)

NS6130-04-439 – Gold Nanorods Sigma (Au, Purity: 99.9%, Diameter: 50-100nm)

NS6130-04-440 – Gold Nanorods Cancer Treatment (Au, Purity: 99.9%, Diameter: 100nm)

NS6130-04-441 – Gold Nanorods (Au, Purity: 99.9%, Diameter: 200nm)

NS6130-10-1148 – Copper Nanowires (Cu, Purity: 99.9%Diameter: 100-200 nm)

NS6130-12-000447 – Silicon Nanowires (Si, Purity: >99.9%, Diameter: ~50nm)

NS6130-12-000438 – Cobalt Nanowires (Co, Purity: 99.9%, Diameter: 200–300nm)