Home » Sodium Oxide Nanopowder (Na2O3, Purity: >99.9%, APS: <100nm)


Stock No. CAS MSDS Specification COA
NS6130-12-000173 1313-59-3 MSDS pdf Specification pdf COA pdf

Sodium Oxide Nanopowder (Na2O3, Purity: >99.9%, APS: <100nm)

Sodium Oxide Nanopowder

Sodium Oxide Nanopowder (Na2O3, Purity: >99.9%, APS: <100nm)

Quality Control: Each lot of Sodium Oxide Nanopowder was tested successfully.

Particles Size of Analysis-Na2O3

Particles Size of Analysis-Na2O3

Product Sodium Oxide Nanopowder
Stock No NS6130-12-000173
CAS 1313-59-3 Confirm
HS Code 28151190 Confirm
Purity >99.9% Confirm
Molecular Formula Na2O3 Confirm
Molecular Weight 54.98 g/mol Confirm
Form Powder Confirm
Color Yellow Crystalline Solid Confirm
Density 2.28 g/ml Confirm
Melting Point 1,132° C Confirm
Boiling Point 1,950° C Confirm
Specific Heat 72.95 J/mol•K Confirm
Solubility Reacts with ethanol
Main Inspect Verifier Manager QC

Typical Chemical Analysis

Assay >99.9%
Other Metal 1000ppm

Expert Reviews

Dr. Baron Augustin, Ph.D (TUM)
Dr. Baron Augustin, Ph.D (TUM), (Technical University of Munich, Germany)

Metal oxides play a very important role in many areas of chemistry, physics and materials science. The metal elements are able to form a large diversity of oxide compounds. These can adopt a vast number of structural geometries with an electronic structure that can exhibit metallic, semiconductor or insulator character. In technological applications, oxides are used in the fabrication of microelectronic circuits, sensors, piezoelectric devices, fuel cells, coatings for the passivation of surfaces against corrosion, and as catalysts.

Dr. Darren Chandler, Ph.D
Dr. Darren Chandler, Ph.D, (Manchester Metropolitan University, U.K)

Oxide nanoparticles can exhibit unique physical and chemical properties due to their limited size and a high density of corner or edge surface sites. Particle size is expected to influence three important groups of basic properties in any material. The first one comprises the structural characteristics, namely the lattice symmetry and cell parameters.

Dr. Ms. Cristiana Barzetti
Dr. Ms. Cristiana Barzetti , (University of Cagliari-Department of Chemical Engineering and Material Science, Italy)

Bulk oxides are usually robust and stable systems with well-defined crystallographic structures. However, the growing importance of surface free energy and stress with decreasing particle size must be considered: changes in thermodynamic stability associate with size can induce modification of cell parameters and/or structural transformations and in extreme cases the nanoparticle can disappear due to interactions with its surrounding environment and a high surface free energy. In order to display mechanical or structural stability, a nanoparticle must have a low surface free energy.

Dr. Jang Huang, Ph.D
Dr. Jang Huang, Ph.D, (Shandong Science and Technology University, China)

The effect of size is also related to the electronic properties of the oxide. In any material, the nanostruture produces the quantum size or confinement effects which essentially arise from the presence of discrete, atom-like electronic states. From a solid-state point of view, these states can be considered as being a superposition of bulk-like states with a concomitant increase in oscillator strength. Additional general electronic effects of quantum confinement experimentally probed on oxides are related to the energy shift of exciton levels and optical bandgap.

Dr. Mark Brown
Dr. Mark Brown, (Georgia Institute of Technology in Atlanta,USA)

Structural and electronic properties drive the physical and chemical properties of the solid, the third group of properties influenced by size in a simple classification. In their bulk state, many oxides have wide band gaps and a low reactivity. A decrease in the average size of an oxide particle do in fact change the magnitude of the band gap, with strong influence in the conductivity and chemical reactivity.

Sodium Oxide Nanopowder

Sodium Oxide Nanopowder