Titanium Hydride Powder (TiH2, 99.9%, APS: 10-20µm)

Titanium Hydride Powder

Product: Titanium Hydride Powder (TiH2, 99.9%, APS: 10-20µm)

Quality Control: Each lot of NANOSHEL Titanium Hydride Powder was tested successfully.

Titanium Hydride Powder

Particles Size Analysis – TiH2 Powder

TiH2 Powder

SEM – Titanium Hydride Powder

Product Name Titanium Hydride Powder
Stock No. NS6130-12-000601
CAS 7704-98-5 Confirm
APS 10-20 µm Confirm
Purity 99.9%, Confirm
Molecular Formula TiH2 Confirm
Molecular Weight 49.88 g/mol Confirm
Colour Black Confirm
Density 3.76 g/cm³ Confirm
Melting Point 350°C Confirm
Solubility Insoluble in Water
Sensitivity Moisture sensitive
Main Inspect Verifier Manager QC

Typical Chemical Analysis

 

TiH2 99.9 %
Fe 60ppm
Si 10ppm
Cl 60ppm
C 20ppm
N 30ppm
O 10ppm
All Other Metal <50ppm

 Experts Review:

Dr. Marcus Tägtmeyer (International Medical and Technological University, Dar es Salaam, Tanzania)


Dr. Marcus Tägtmeyer (International Medical and Technological University, Dar es Salaam, Tanzania)
Compound micro powder is made up of atoms of different elements, joined together by chemical bonds. A compound micropowder synthesis usually involves the breaking of existing bonds and the formation of new ones. Synthesis of a complex molecule may involve a considerable number of individual reactions leading in sequence from available starting materials to the desired end product. Each step usually involves reaction at only one chemical bond in the molecule.


Dr. Ms Jane Li (National Penghu University of Science and Technology, Magong, Penghu, Republic of China)
Dr. Ms Jane Li (National Penghu University of Science and Technology, Magong, Penghu,  Republic of China)
Compound micropowders possesses great properties such as high strength, biocompatibility, corrosion resistance, and hydrogen storage capability. Among various compound micro powders, Ti-Cr based micro powders have one of the most promising properties and are mostly popular owing to their capacity of hydrogen storage, high temperature oxidation, and scaling resistance.


Dr. Willem-Jan de Kleijn Ph.D (Luleå University of Technology, Luleå, Sweden)
Dr. Willem-Jan de Kleijn Ph.D (Luleå University of Technology, Luleå, Sweden)
Iron aluminides based compound micro powders are candidates for a variety of structural applications. The combination of low density, excellent oxidation and sulfidation resistance, and lack of strategic alloying elements makes these alloys particularly attractive. A variety of fabrication methods have been employed in the study of intermetallic compounds; powder metallurgy processing is becoming increasingly important for obtaining desirable microstructures, improved properties, and near net shape manufacturing capabilities.


Dr. JKF Gojukai PhD (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)
Dr. JKF Gojukai PhD (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)
A compound micro powder processing method approach, known as reaction sintering, combustion synthesis, or self-propagating high-temperature synthesis, utilizes an exothermic reaction between powder constituents to synthesize compounds. Process advantages include the use of inexpensive and easily compacted elemental powders, low processing temperatures, short processing times, and considerable flexibility in terms of compositional and microstructural control..


Dr. Huang Fu Ph.D (Maebashi Institute of Technology, Maebashi, Gunma, Japan)
Dr. Huang Fu Ph.D (Maebashi Institute of Technology, Maebashi, Gunma, Japan)
In compound micropowders one of the possible and promising methods of improving the physical and mechanical properties (Young’s modulus, ultimate tensile strength, yield strength, hardness, durability, and specific electrical and thermal properties) of compound micro powder is the introduction of micro- and nanoparticles of oxides (nitrides, borides, and carbides) into the melt with subsequent solidification. Methods of production of nonmetallic micro- and nanoparticles can significantly affect morphology and physical properties of nanopowders. Thus, the particle structure, phase composition, and morphology are to be studied carefully in order to assure the properties of compound micro powder produced using these particles.


Titanium Hydride Powder


Contact Us:

Please feel free to send us your requirement about our products
sales@nanoshel.com
contact@nanoshel.com
+1 646 470 4911 (US)
+36 30 4750555 (EU)
+91-9779880077 (India)


Nanoshel’s Most Moving Products:

NS6130-01-101 – Silver (Ag) Nanoparticles / Nanopowder (Ag, 99.99%, 80-100 nm, metal basis)

NS6130-01-105 – Aluminium Nanoparticles/Nanopowder (Al, 99.9%, APS: 100nm, Metal basis)

NS6130-01-128 – Copper Nanoparticles/Nanopowder (Cu, Purity: 99.9%, APS: 80-100nm, Metal Basis)

NS6130-01-108 – Gold (Au) Nanopowder (Au, 99.99+%, 50-100 nm)

NS6130-02-219 – Antimony Tin Oxide Nanoparticles (ATO, SnO2:Sb2O3=90:10, 99.8%, 30nm)

NS6130-03-301 – Aluminium Oxide Nanopowder (Al2O3, 99.99%, <100nm)

NS6130-03-341 – Silicon Oxide Nanopowder (SiO2, S-type, Purity: 99.9%, APS: 15-20nm)

NS6130-03-350 – Titanium Oxide Nanopowder (TiO2, Anatase, 99.9%, 10-25nm)

NS6130-10-1002 – P Type Silicon Wafer (4″ Boron Doping)

NS6130-03-341 – SiO2 Nanoparticles (Silicon Dioxide, 15-20nm, 99.9%, S-type)

NS6130-10-1007 – Metallic Copper Foamposite (Cu, PPI-50PPI, Thickness; 2mm)

NS6130-10-1052 – Titanium Sputtering Target (Ti, Purity: 99.99%)

NS6130-10-1214 – Aluminium Metal Foam (Al, Closed Cell, 2-11mm)

NS6130-10-1233 – Screen Printed Electrodes (3-electrodes)

NS6130-06-640 – Pristine MWCNT (99%, OD:10-20nm, Length:3-8μm)

NS6130-06-601 – Single Walled Carbon Nanotubes (>98wt% OD:1-2nm, Length:3-8µm, High Purity)

NS6130-06-680 – Industrial Grade Carbon Nanotubes in bulk quantities

NS6130-06-659 – COOH Functionalized CNT (Carbon Nanotubes, OD: 10-20nm, Length: 3-8µm)

NS6130-03-364 – Single Layer Graphene (C, >50%, Thickness 0.5-6nm, Lateral Size 1-10µm)

NS6130-03-365 – Multilayer Graphene (C, 4-6 Layer Flakes, >80%, 1-10µm)

NS6130-06-659 – COOH Functionalized CNT (Carbon Nanotubes, OD: 10-20nm, Length: 3-8µm)

NS6130-09-907 – Montmorillonite (Natural montmorillonite Modified, >99%, <80nm)