Zinc Oxide Nanopowder Dispersion Lithium Doped (ZnO, Purity: 98%, APS: 3nm)

Zinc Oxide Nanopowder Dispersion Lithium Doped

Product: Zinc Oxide Nanopowder Dispersion Lithium Doped (ZnO, Purity: 98%, APS: 3nm)

Quality Control: Each lot of NANOSHEL Zinc Oxide Nanopowder Dispersion Lithium Doped was tested successfully.

Zinc Oxide Nanopowder Dispersion Lithium Doped

Li doped ZnO Nanoparticles Dispersion

Zinc Oxide Nanopowder Dispersion Lithium Doped

SEM – Li doped ZnO Nanoparticles

Material Zinc Oxide Nanopowder Dispersion Lithium Doped
Stock No. NS6130-04-480
CAS 1314-13-2 Confirm
APS 3nm Confirm
Purity 98% Confirm
Color Milky White Confirm
Doping Lithium (1-2%) Confirm
pH 4-5 Confirm
Solvent Butanol Confirm
Concentration 20 wt% (Available as per Customer requirement)
Available Quantities 10ml, 50ml, 100ml, 250ml and larger quantities
Main Inspect Verifier Manager QC

Typical Chemical Analysis of Zinc Oxide Nanopowder Dispersion

Pb ≤ 0.005 %
Cd ≤ 0.003 %
Fe ≤ 0.003 %
Cu ≤ 0.003 %
Sn ≤ 0.001 %
Al ≤ 0.001 %
As ≤ 0.001 %
Sb ≤ 0.001 %

Experts Review:

58496396Dr. Bruce Perrault, Ph.D (Georgia Institute of Technology (Georgia Tech), USA)
Doping on nanomaterials provides a flexible way to tune to the properties of the materials while maintaining their high surface areas. The electronic, optical, photochemical, photo-electrochemical, photocatalytic and photoexcited relaxation properties can be tuned towards the desired direction by adding different elements. The materials can be engineered towards specific applications through careful selection of the dopants.

1252525Dr. Myron Rubenstein, Ph.D (Polytechnic University of Turin, Italy)
Doping is a powerful and effective way to alter the electronic and optical properties of a semiconductor. Doping is essential in the semiconductor industry since most semiconductors including silicon are essentially insulators without doping at room temperature. The addition of dopant can introduce electronic and structural defects into the pristine nanomaterials that can be advantageous or deleterious.

2536582Dr. Huojin Chan (University of Science and Technology of China, Hefei, Anhui, China)
Doping typically follows a Poisson distribution. The uniform doping is done either by growth or nucleation techniques by decoupling the doping and growth process. In nucleation doping reaction conditions are controlled in such a way along with judicious choice of reactants that a nucleus of dopant can be created and by shell growth of effectively confining the dopant to the center of particle.

10604509_1459864657612760_2405225879143508610_oDr. Ms. Yi Yen Shi, (King Mongkut’s University of Technology Thonburi,Bangkok, Thailand)
Nano-materials have been recently investigated due to their novel properties that are acquired at the nanometer scale, properties which change with size or shape. Besides the elemental composition and physical structure, as in bulk material or traditional chemistry, the size of the material provides another variable for us to tune the property of material. Moreover, a few dopants in the material can make the properties more adjustable.

125448Dr. Hans Roelofs Ph.D (National Technical University of Athens, Greece)
Dopant precursor substantially changes the reaction kinetics. Doped semiconductor nanomaterials are expected to play an important role in nanoelectronics and nanophotonic devices. Doping level of nanostructures will effects the properties and functionality of nanoparticles. Doped semiconductor nanomaterials constitute a unique and important class of nanomaterials with novel properties.

Li-Doped ZnO Nanoparticles Dispersion

Zinc Oxide Nanopowder Dispersion Lithium Doped

Contact Us:

Please feel free to send us your requirement about our products
+1 646 470 4911 (US)
+36 30 4750555 (EU)
+91-9779880077 (India)

More Oxide Nano Dispersions By Nanoshel

NS6130-04-413 – Titania Nanoparticle Dispersion (TiO2, Anatase, 99.9%, 5-15nm)

NS6130-04-414 – ZnO Nanoparticle Dispersion (Zinc Oxide, 99.9 %, 30-40nm)

NS6130-04-415 – Nano Zinc Oxide Dispersion (ZnO, Purity: 99.9 %, APS: 50-80nm)

NS6130-04-420 – Antimony Tin Oxide Dispersion (ATO, SnO2:Sb2O3=90:10, 20 wt%, 20-80nm)

NS6130-04-421 – Zirconium Oxide Nanoparticle Dispersion (ZrO2, Purity: 99.9 %, APS: 45-55nm)

NS6130-04-422 – Iron Oxide Nanoparticles Dispersion (Fe2O3, Purity: 99.9 %, APS: 20-100nm)

NS6130-04-423 – ATO Nanoparticles Dispersion (Antimony Tin Oxide, SnO2:Sb2O3=90:10, 50-80nm)

NS6130-04-424 – ZnO Slurry (Zinc Oxide, Purity: 99.9 %, APS: 50-80nm)

NS6130-04-425 – Alumina Slurry Polishing (Al2O3, Purity: 99.9 %, APS: 50-80nm)

NS6130-04-426 – Zirconia Slurry Polishing (ZrO2, Purity: 99.9 %, APS: 50-80nm)