STANNOUS OXIDE NANOPowder

Purity 99.9%

SnO
Stannous oxide nanoparticles show unique characteristics such as low cost, low response time, high gas sensing and fast recovery makes it a suitable material for gas sensors. Stannous oxide (SnO), an important p-type semiconductor with direct optical band gap (Eg) of 2.5eV, has shown its significance in many fields of science and engineering and has been applied as coating substance, a catalyst for the polymerization of lactic acids, thin-film transistor TFT. SnO and other tin oxides are being used in different fields of technology, such as catalysis, chemical gas sensing, heat reflection, and microelectronics.

SnO synthesized by various techniques such as hydrothermal method, wet chemical however simple route is sonication-assisted precipitation technique at room temperature for the preparation of SnO. Recently, SnO becomes the most attractive material due to it is used in the lithium-ion secondary battery.

Quick Facts

- **Product**: Stannous Oxide Nanopowder
- **Stock No**: NS6130-03-349
- **CAS**: 21651-19-4
- **Color**: White/Light Gray
- **Form**: Powder
- **Symbol**: SnO

Technical Specification

<table>
<thead>
<tr>
<th>Molecular Formula</th>
<th>Molecular Weight</th>
<th>Density</th>
<th>Melting Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO</td>
<td>134.71 g/mol</td>
<td>6.45 g/cm³</td>
<td>1080 °C</td>
</tr>
</tbody>
</table>

Chemical Composition

- **Product**: Stannous Oxide Nanopowder
 - **SnO**: 99.9%
 - **Other Metal**: 1000ppm

Applications

- In lithium-ion rechargeable batteries
- Used as a catalyst for the polymerization of lactic acids
- Thin film transistor TFT
- Chemical gas sensing
- Heat reflection
- Microelectronics