TITANIUM OXIDE NANOPowDER
Coated with Silicon oil

Purity 99.9%

TiO₂

Follow us:

www.nanoshel.com | sales@nanoshel.com
TiO₂ is available in the form of nanocrystals or nanodots having a high surface area. They exhibit magnetic properties. Titanium belongs to Block D, Period 4 while oxygen belongs to Block P, Period 2 of the periodic table. Titanium oxide is also known as flamenco, rutile, titanium dioxide and dioxotitanium. Titanium Dioxide nanoparticles are known for their ability to inhibit bacterial growth and prevent further formation of cell structures.

In recent years, metal oxide nanoparticles have attracted much attention by their potential application in diverse fields including catalysis, magnetic recording media, microelectronics and medicine. For example, TiO₂ nanoparticles are very important due to their various applications like removing the environmental pollution, sterilization and restraining virus, defending UV, keep rust away, and de-pigment. TiO₂ is mostly used as white pigment because of its high diffraction index, strong light scattering, incident-light reflection capability and a high UV resistance that make TiO₂ the standard pigment found in white dispersion paints with high hiding power.

Coated with Silicon oil

TITANIUM OXIDE NANOPowDER

TiO₂ is available in the form of nanocrystals or nanodots having a high surface area. They exhibit magnetic properties. Titanium belongs to Block D, Period 4 while oxygen belongs to Block P, Period 2 of the periodic table. Titanium oxide is also known as flamenco, rutile, titanium dioxide and dioxotitanium. Titanium Dioxide nanoparticles are known for their ability to inhibit bacterial growth and prevent further formation of cell structures.

In recent years, metal oxide nanoparticles have attracted much attention by their potential application in diverse fields including catalysis, magnetic recording media, microelectronics and medicine. For example, TiO₂ nanoparticles are very important due to their various applications like removing the environmental pollution, sterilization and restraining virus, defending UV, keep rust away, and de-pigment. TiO₂ is mostly used as white pigment because of its high diffraction index, strong light scattering, incident-light reflection capability and a high UV resistance that make TiO₂ the standard pigment found in white dispersion paints with high hiding power.

Quick Facts

Coated with Silicon oil

TiO₂ is available in the form of nanocrystals or nanodots having a high surface area. They exhibit magnetic properties. Titanium belongs to Block D, Period 4 while oxygen belongs to Block P, Period 2 of the periodic table. Titanium oxide is also known as flamenco, rutile, titanium dioxide and dioxotitanium. Titanium Dioxide nanoparticles are known for their ability to inhibit bacterial growth and prevent further formation of cell structures.

In recent years, metal oxide nanoparticles have attracted much attention by their potential application in diverse fields including catalysis, magnetic recording media, microelectronics and medicine. For example, TiO₂ nanoparticles are very important due to their various applications like removing the environmental pollution, sterilization and restraining virus, defending UV, keep rust away, and de-pigment. TiO₂ is mostly used as white pigment because of its high diffraction index, strong light scattering, incident-light reflection capability and a high UV resistance that make TiO₂ the standard pigment found in white dispersion paints with high hiding power.

TiO₂ is available in the form of nanocrystals or nanodots having a high surface area. They exhibit magnetic properties. Titanium belongs to Block D, Period 4 while oxygen belongs to Block P, Period 2 of the periodic table. Titanium oxide is also known as flamenco, rutile, titanium dioxide and dioxotitanium. Titanium Dioxide nanoparticles are known for their ability to inhibit bacterial growth and prevent further formation of cell structures.

In recent years, metal oxide nanoparticles have attracted much attention by their potential application in diverse fields including catalysis, magnetic recording media, microelectronics and medicine. For example, TiO₂ nanoparticles are very important due to their various applications like removing the environmental pollution, sterilization and restraining virus, defending UV, keep rust away, and de-pigment. TiO₂ is mostly used as white pigment because of its high diffraction index, strong light scattering, incident-light reflection capability and a high UV resistance that make TiO₂ the standard pigment found in white dispersion paints with high hiding power.