Titanium Aluminium Nitrate (TiAlN, Purity: >99.9%, APS: 80-100nm)

Titanium Aluminium Nitrate

Product: Titanium Aluminium Nitrate (TiAlN, >99.9%, 80-100nm)

Quality Control: Each lot of NANOSHEL Titanium Aluminium Nitrate was tested successfully.

Titanium Aluminium Nitrate

Particles Size Analysis – TiAlN Nanoparticles

Product Name Titanium Aluminium Nitride Powder
Stock No NS6130-02-295
CAS 25583-20-4/24304-00-5 Confirm
APS 80-100nm Confirm
Purity >99.9% Confirm
APS 80-100nm Confirm
Density 5.0-6.0 g/cm³ Confirm
Molecular Formula TiAlN Confirm
Foam Powder Confirm
Color Violet-Black/light gray Confirm
Hardness (Vickers) 2800 (85 Rc) Confirm
Oxidation Temperature 800°C (1450°F) Confirm
Friction Coefficient 70 Confirm
Thickness 2-4 microns Confirm
Surface Roughness (Ramm) .40 Confirm
Deposition Temperature 350 to 500º C Confirm
Thermal Conductivity Low Confirm
Wear Resistance  Excellent Confirm
Solubility Insoluble in water
Main Inspect Verifier Manager QC

Experts Review:

58496396Dr. Bruce Perrault, Ph.D (Georgia Institute of Technology (Georgia Tech), USA)
Nanoparticles are not solely a product of modern technology, but are also created by natural processes such as volcano eruptions or forest fires. Naturally occurring nanoparticles also include ultrafine sand grains of mineral origin (e.g. oxides, carbonates). A decisive feature that makes nanoparticles technically interesting is their surface-to-volume ratio. This ratio increases with decreasing particle diameter.


1252525Dr. Myron Rubenstein, Ph.D (Polytechnic University of Turin, Italy)
Nanoparticles of a metal compound, e.g., a metal oxide, a doped metal compound, and a metal complex, are widely used in the fields of chemical catalysts, optoelectronic materials, optical materials, sensor materials, flame retardant materials, electrode materials and others. Such nanoparticles are provided in various shapes which include, e.g., spherical particles, nanofibers, and nanosheets having enhanced surface activity.


2536582Dr. Huojin Chan (University of Science and Technology of China, Hefei, Anhui, China)
Metal compounds are extensively used as flame retardants; their key advantage consists in that no toxic combustion products are released during combustion and exploitation of the composite.  Most of metal-containing flame retardants are effective smoke suppressants.


10604509_1459864657612760_2405225879143508610_oDr. Ms. Yi Yen Shi, (King Mongkut’s University of Technology Thonburi,Bangkok, Thailand)
Metal compound nanoparticles act by forming dense protective surface layers and by increasing the yield of carbonaceous residue. Therefore, the following flammability characteristics of polymer materials are essential for assessment of their flame-retardant performance: burning rate to be determined in accordance with, coke number, temperature and rate of mass loss, and other.


125448Dr. Hans Roelofs Ph.D (National Technical University of Athens, Greece)
Metal compounds are often used as synergistic additives to other types of flame retardants.  Metal compounds of transition metals are of particular interest because of their structural, spectral and chemical properties are often strongly dependant on the nature of the ligand structure.


TiAlN Nanoparticles

Titanium Aluminium Nitrate


Contact Us:

Please feel free to send us your requirement about our products
sales@nanoshel.com
 contact@nanoshel.com
+1 646 470 4911 (US)
+36 30 4750555 (EU)
+91-9779880077 (India)


Nanoshel’s Most Moving Products:

NS6130-01-101 – Silver (Ag) Nanoparticles / Nanopowder (Ag, 99.99%, 80-100 nm, metal basis)

NS6130-01-105 – Aluminium Nanoparticles/Nanopowder (Al, 99.9%, APS: 100nm, Metal basis)

NS6130-01-128 – Copper Nanoparticles/Nanopowder (Cu, Purity: 99.9%, APS: 80-100nm, Metal Basis)

NS6130-01-108 – Gold (Au) Nanopowder (Au, 99.99+%, 50-100 nm)

NS6130-02-219 – Antimony Tin Oxide Nanoparticles (ATO, SnO2:Sb2O3=90:10, 99.8%, 30nm)

NS6130-03-301 – Aluminium Oxide Nanopowder (Al2O3, 99.99%, <100nm)

NS6130-03-341 – Silicon Oxide Nanopowder (SiO2, S-type, Purity: 99.9%, APS: 15-20nm)

NS6130-03-350 – Titanium Oxide Nanopowder (TiO2, Anatase, 99.9%, 10-25nm)

NS6130-10-1002 – P Type Silicon Wafer (4″ Boron Doping)

NS6130-03-341 – SiO2 Nanoparticles (Silicon Dioxide, 15-20nm, 99.9%, S-type)

NS6130-10-1007 – Metallic Copper Foamposite (Cu, PPI-50PPI, Thickness; 2mm)

NS6130-10-1052 – Titanium Sputtering Target (Ti, Purity: 99.99%)

NS6130-10-1214 – Aluminium Metal Foam (Al, Closed Cell, 2-11mm)

NS6130-10-1233 – Screen Printed Electrodes (3-electrodes)

NS6130-06-640 – Pristine MWCNT (99%, OD:10-20nm, Length:3-8μm)

NS6130-06-601 – Single Walled Carbon Nanotubes (>98wt% OD:1-2nm, Length:3-8µm, High Purity)

NS6130-06-680 – Industrial Grade Carbon Nanotubes in bulk quantities

NS6130-06-659 – COOH Functionalized CNT (Carbon Nanotubes, OD: 10-20nm, Length: 3-8µm)

NS6130-03-364 – Single Layer Graphene (C, >50%, Thickness 0.5-6nm, Lateral Size 1-10µm)

NS6130-03-365 – Multilayer Graphene (C, 4-6 Layer Flakes, >80%, 1-10µm)

NS6130-06-659 – COOH Functionalized CNT (Carbon Nanotubes, OD: 10-20nm, Length: 3-8µm)

NS6130-09-907 – Montmorillonite (Natural montmorillonite Modified, >99%, <80nm)