Zirconium Diboride Powder (ZrB2, APS: 40-50µm, Purity: 99%)

Zirconium Diboride Powder

Product: Zirconium Diboride Powder (ZrB2, APS: 40-50µm, Purity: 99%)

Quality Control: Each lot of NANOSHEL Zirconium Diboride Powder was tested successfully.

Zirconium Diboride Powder

Particles Size Analysis – ZrB2 Powder

Materials Zirconium Diboride Powder
Stock No NS6130-05-523
CAS 12045-64-4
Purity 99%
APS 40-50µm
SSA 10-11 m2/g
Enrichment 54.3 to 55.3 wt%
Boron Content 17.15 to 20.15 wt%
Color Black
Morphology Nearly Spherical
Packaging 2 Layers Vacuum Packaging
Appearance Powder (Micro)

TYPICAL CHEMICAL ANALYSIS

Al < 1000 ppm
Bi < 1000 ppm
Ca < 1000 ppm
Cd < 1000 ppm
Co < 1000 ppm
Cr < 1000 ppm
Cu < 1000 ppm
Fe < 1000 ppm
Hf < 1000 ppm
In < 1000 ppm

 Experts Review:

Dr. Marcus Tägtmeyer (International Medical and Technological University, Dar es Salaam, Tanzania)


Dr. Marcus Tägtmeyer (International Medical and Technological University, Dar es Salaam, Tanzania)
Compound micro powder is made up of atoms of different elements, joined together by chemical bonds. A compound micropowder synthesis usually involves the breaking of existing bonds and the formation of new ones. Synthesis of a complex molecule may involve a considerable number of individual reactions leading in sequence from available starting materials to the desired end product. Each step usually involves reaction at only one chemical bond in the molecule.


Dr. Ms Jane Li (National Penghu University of Science and Technology, Magong, Penghu, Republic of China)
Dr. Ms Jane Li (National Penghu University of Science and Technology, Magong, Penghu,  Republic of China)
Compound micropowders possesses great properties such as high strength, biocompatibility, corrosion resistance, and hydrogen storage capability. Among various compound micro powders, Ti-Cr based micro powders have one of the most promising properties and are mostly popular owing to their capacity of hydrogen storage, high temperature oxidation, and scaling resistance.


Dr. Willem-Jan de Kleijn Ph.D (Luleå University of Technology, Luleå, Sweden)
Dr. Willem-Jan de Kleijn Ph.D (Luleå University of Technology, Luleå, Sweden)
Iron aluminides based compound micro powders are candidates for a variety of structural applications. The combination of low density, excellent oxidation and sulfidation resistance, and lack of strategic alloying elements makes these alloys particularly attractive. A variety of fabrication methods have been employed in the study of intermetallic compounds; powder metallurgy processing is becoming increasingly important for obtaining desirable microstructures, improved properties, and near net shape manufacturing capabilities.


Dr. JKF Gojukai PhD (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)
Dr. JKF Gojukai PhD (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)
A compound micro powder processing method approach, known as reaction sintering, combustion synthesis, or self-propagating high-temperature synthesis, utilizes an exothermic reaction between powder constituents to synthesize compounds. Process advantages include the use of inexpensive and easily compacted elemental powders, low processing temperatures, short processing times, and considerable flexibility in terms of compositional and microstructural control..


Dr. Huang Fu Ph.D (Maebashi Institute of Technology, Maebashi, Gunma, Japan)
Dr. Huang Fu Ph.D (Maebashi Institute of Technology, Maebashi, Gunma, Japan)
In compound micropowders one of the possible and promising methods of improving the physical and mechanical properties (Young’s modulus, ultimate tensile strength, yield strength, hardness, durability, and specific electrical and thermal properties) of compound micro powder is the introduction of micro- and nanoparticles of oxides (nitrides, borides, and carbides) into the melt with subsequent solidification. Methods of production of nonmetallic micro- and nanoparticles can significantly affect morphology and physical properties of nanopowders. Thus, the particle structure, phase composition, and morphology are to be studied carefully in order to assure the properties of compound micro powder produced using these particles.


Zirconium Diboride Powder

Zirconium Diboride Powder

Contact Us for ZrB2 Powder
free quote

From us, you can easily purchase Zirconium Diboride Powder at great prices. Place online order and we will dispatch your order through DHL, FedEx, UPS. You can also request for a quote by mailing us at sales@nanoshel.com Contact: +1 302 268 6163 (US and Europe), Contact: +91-9779550077 (India). We invite you to contact us for further information about our company and our capabilities. At Nanoshel, we could be glad to be of service to you. We look forward to your suggestions and feedback.

More Compound Nanopowder By Nanoshel

NS6130-02-211 – TANTALUM CARBIDE Powder (TaC, 99.9%, 1000nm, Cubic)

NS6130-02-212 – TITANIUM DIBORIDE Nanopowder (TiB2, 99.9%, 2-12µm)

NS6130-02-259 – TITANIUM NITRIDE Powder (TiN, Purity: 99.9%, APS: 40-50nm)

NS6130-02-290 – TITANIUM CARBIDE Nanoparticles (TiC, APS 20-100nm, Purity: 99.9%)

NS6130-02-296 – Niobium Nitride Nanopowder (NbN, Purity: 99.9%, APS: 10-20nm)

NS6130-02-297 – Hafnium Carbide Nanopowder (HfC, Purity: 99.9%, APS: 400-500nm)

NS6130-02-298 – Hafnium Carbide Nanoparticles (HfC, Purity: 99.9%, APS: 100nm)

NS6130-02-592 – Titanium Nitride Nanopowder (TiN, Purity: 99.9%, APS: 20-50μm)

NS6130-05-512 – Titanium Diboride Powder (TiB2, Purity: >99.9%, APS: 2-12µm)

NS6130-05-523 – ZrB2 POWDER (Zirconium Diboride, APS: 40-50µm, Purity: 99%)