Sodium Sulfate Powder (Na2SO4, Purity: 99.9%, APS: 40-60µm)

Sodium Sulfate Powder

Product: Sodium Sulfate Powder (Na2SO4, Purity: 99.9%, APS: 40-60µm)

Quality Control: Each lot of NANOSHEL Sodium Sulfate Powder was tested successfully.

Sodium Sulfate Powder

SEM – Na2SO4 Powder

Na2SO4 Powder

Particles Size Analysis – Sodium Sulfate Powder

Product Name Sodium Sulfate Powder
Stock No. NS6130-12-000938
CAS 7757-82-6 Confirm
Purity 99.9% Confirm
APS 40-60µm Confirm
Molecular Formula Na2SO4 Confirm
Molecular weight 142.04g/mol Confirm
Form Powder Confirm
Appearance White Confirm
Density 2.664 g/cm3 Confirm
Melting Point 884 °C Confirm
Boiling Point 1429 °C Confirm
Resistivity 4.33 μΩ-cm Confirm
Solubility Soluble in water, glycerol
Main Inspect Verifier Manager QC

Typical Chemical Analysis

Loss on ignition 0.5%
N compound 5ppm
K 5ppm
Pb 10ppm
Fe 10ppm
Mg 5ppm
All Other Metal 15ppm

 Experts Review:

Dr. Marcus Tägtmeyer (International Medical and Technological University, Dar es Salaam, Tanzania)


Dr. Marcus Tägtmeyer (International Medical and Technological University, Dar es Salaam, Tanzania)
Compound micro powder is made up of atoms of different elements, joined together by chemical bonds. A compound micropowder synthesis usually involves the breaking of existing bonds and the formation of new ones. Synthesis of a complex molecule may involve a considerable number of individual reactions leading in sequence from available starting materials to the desired end product. Each step usually involves reaction at only one chemical bond in the molecule.


Dr. Ms Jane Li (National Penghu University of Science and Technology, Magong, Penghu, Republic of China)
Dr. Ms Jane Li (National Penghu University of Science and Technology, Magong, Penghu,  Republic of China)
Compound micropowders possesses great properties such as high strength, biocompatibility, corrosion resistance, and hydrogen storage capability. Among various compound micro powders, Ti-Cr based micro powders have one of the most promising properties and are mostly popular owing to their capacity of hydrogen storage, high temperature oxidation, and scaling resistance.


Dr. Willem-Jan de Kleijn Ph.D (Luleå University of Technology, Luleå, Sweden)
Dr. Willem-Jan de Kleijn Ph.D (Luleå University of Technology, Luleå, Sweden)
Iron aluminides based compound micro powders are candidates for a variety of structural applications. The combination of low density, excellent oxidation and sulfidation resistance, and lack of strategic alloying elements makes these alloys particularly attractive. A variety of fabrication methods have been employed in the study of intermetallic compounds; powder metallurgy processing is becoming increasingly important for obtaining desirable microstructures, improved properties, and near net shape manufacturing capabilities.


Dr. JKF Gojukai PhD (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)
Dr. JKF Gojukai PhD (Kaiserslautern University of Technology, Kaiserslautern, Rhineland-Palatinate, Germany)
A compound micro powder processing method approach, known as reaction sintering, combustion synthesis, or self-propagating high-temperature synthesis, utilizes an exothermic reaction between powder constituents to synthesize compounds. Process advantages include the use of inexpensive and easily compacted elemental powders, low processing temperatures, short processing times, and considerable flexibility in terms of compositional and microstructural control..


Dr. Huang Fu Ph.D (Maebashi Institute of Technology, Maebashi, Gunma, Japan)
Dr. Huang Fu Ph.D (Maebashi Institute of Technology, Maebashi, Gunma, Japan)
In compound micropowders one of the possible and promising methods of improving the physical and mechanical properties (Young’s modulus, ultimate tensile strength, yield strength, hardness, durability, and specific electrical and thermal properties) of compound micro powder is the introduction of micro- and nanoparticles of oxides (nitrides, borides, and carbides) into the melt with subsequent solidification. Methods of production of nonmetallic micro- and nanoparticles can significantly affect morphology and physical properties of nanopowders. Thus, the particle structure, phase composition, and morphology are to be studied carefully in order to assure the properties of compound micro powder produced using these particles.


Sodium Sulfate Powder

Sodium Sulfate Powder


Contact Us:

Please feel free to send us your requirement about our products
sales@nanoshel.com
contact@nanoshel.com
+1 646 470 4911 (US)
+36 30 4750555 (EU)
+91-9779880077 (India)


Nanoshel’s Product Categories Link:

BIO NANO CONJUGATE SERVISES, POSS, CORE SHELL NANOPARTICLES, ZnSE/ZnS QUANTUM DOTS, InP/ZnS QUANTUM DOTS, CdS/ZnS QUANTUM DOTS, CdSe/ZnS QUANTUM DOTS, UPCONVERTING NANOPARTICLES, PbS QUANTUM DOTS, ZnSe/ZnS QDs WATER SOLUBLE, InP ZnS QDs SURFACE MODIFIED, CdS/ZnS QDs H2O SOLUBLE, PbS QDs SURFACE MODIFIED, ARSENIDES, LANTHANIDE NANOMATERIALS, TRANSITION METAL NANOMATERIALS, SPECIALITY CHEMICALS, MAGNETIC NANOPARTICLES, CUSTOM SYENTHESIS, METALIC FOAMS, SCREEN PRINTED BIO SENSOR